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Abstract In this short correspondence, we mainly consider quasi-cyclic (QC) codes
over finite chain rings. We study module structures and trace representations of QC
codes, which lead to some lower bounds on the minimum Hamming distance of QC
codes.
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1 Introduction

Let R denote a finite chain ring with nilpotency index s, y a generator of its maximal
ideal and F, the residue field R/(y). The ideals of R form a chain as (0) = (y*) C
(o Cly)yc()=R. B

Define the ring surjective homomorphism = : R — R = F, by r > 7, where 7
denotes r + (). Extending the ring homomorphism ~ : R[x] — F,[x] by ro +r1x +
coorpx" > o+ 711X 4 - - - +7,x", and the image of f(x) € R[x] under the map
~ is denoted by f(x) € Fqlx].

A polynomial f(x) € R[x] is said to be basic irreducible if f(x) is irreducible
in IF,[x], and basic primitive if £(x) is primitive in Fy[x]. If f(x) is a monic basic
irreducible polynomial with degree m over R, then the residue class ring R[x]/(f (x))
is called the m-th Galois extension ring of R, and denoted as R. R is also a finite
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chain ring, with maximal ideal (y) and nilpotency index s. If £ is a root of f(x), then
R = R[£],i.e., R is a free module of rank m over R with {1, &, ..., €™~} as a basis.
If f(x) is a basic primitive polynomial over R, and & is the root of f(x), then the
order of & is g™ — 1. Let the Teichmiiller set be T = {0, 1, &, ..., Sqm_z}. Then each
element r of R can be expressed uniquely as r = rg +r1y + -+ +rs—_1y° —1, where
ro, 71, ..., rs—1 € 7T.Further information on finite chain rings can be found in [8].

Quasi-cyclic (QC) codes are an important class of linear codes and have good
algebra structures [2,3,5-7]. They have proved to be a rich source of good codes
[1,3,10]. Recently, there are more and more interesting work on QC codes over finite
chain rings [1,2,7,10]. Minimum Hamming distance related to the ability of error-
correcting is a very important parameter of codes, and its estimation is crucial to
search or construct good codes. This is one of the motivations to generalize some
bounds on the minimum Hamming distance of QC codes over finite fields to finite
chain rings. In [6], Lally studied the structural properties of QC codes over finite
fields. A lower bound on the minimum Hamming distance of a QC code in terms of
the minimum Hamming distance of one cyclic code and one linear code related to the
generators of QC code was given. In [5], Giineri—-Ozbudak gave another lower bound
on the minimum Hamming distance of a QC code over finite fields by using the trace
representation of a QC code.

In this short correspondence, following the approached given in [5,6], we also
present two different minimum Hamming distance bounds on QC codes over finite
chain rings. The correspondence is organized as follows. In Sect. 2, we discuss trace
representations of cyclic codes. In Sect. 3, we discuss module structures of QC codes
over finite chain rings, which are generalizations of QC codes over finite fields. This
point of view for studying QC codes could give a lower bound on the minimum
Hamming distance and a construction method of linear codes over finite fields. In
Sect. 4, we discuss the trace representation of QC codes over finite chain rings, which
lead to another lower bound on the minimum Hamming distance.

2 Cyclic codes

Let R" be the set of n-tuples over R. % is a linear code of length n over R if and
only if ¥ is an R-submodule of R". Let T be the cyclic shift operator T: R — R",
which transforms v = (vg, vy, ..., vy,—1) into vT = (v,—1, Vg, ..., Vy—2). A linear
code ¥ is called the cyclic code of length n if it is invariant under 7. We assume n
to be a positive integer not divisible by the characteristic of the finite field F = F,.
Therefore x — 1 has a unique decomposition as a product of monic basic irreducible
pairwise coprime polynomials in R[x]. Let f(x) be a factor of x — 1 over R. Denote
f(x) = (x" — 1)/f (x). It is well known that the cyclic code of length n over R can
be regarded as an ideal of R[x]/(x" — 1).

Proposition 2.1 (cf.[11] Theorem 2.9) Let f1, f2, ..., fr be pairwise coprime mgm'c
polynomials of degree = 1 over R, f = fif2... fr and Ry = R[x]/(f). Let fi =
f/fi- Then there exist a;, b; € R[x] such that a; f; + b; fi = 1. Let e; = b; f; + (f).
Then

(1) ey, e, ..., e are mutually orthogonal non-zero idempotents of R y;
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(2) l=ey+ex+---+e inRy;
(3) Let Rye; = (e;) be the prmczpal ideal of Ry generated by e;. Then e; is the
identity of Rre; and R re; = (f, (N
(4) Ry =®_|Ryei;
(5) Themap R[x]/{fi) — Rye; defined by g+ (f;) > (g +{f))ei is awell-defined
isomorphism of rings;
(6) Ry = RIx1/{f) = ®;_ RIx]/{fi)
Let € be a cyclic code of length n generated by g(x) over R. Unlike the case over
finite fields, g(x) may be not a divisor of x" — 1. It is related to whether € is a free
R-module or not.

Proposition 2.2 (cf. [9] Proposition 4.11) Let € be a linear code over finite chain
ring R. Then the following properties are equivalent

(1) € is the Hensel lift of a cyclic code over R;
(2) € is a cyclic code and free;
(3) There exists a polynomial g(x) € R[x] such that € = (g(x)) and g(x)|x" — 1.

Suppose that & is an n-th primitive root of unity and R is the smallest Galois
extension ring of R containing the n-th primitive root of unity &. Therefore x" — 1 =
x-—Dx—-&---(x — E”_l) over R. Define the map 7 as follows

7 RIx]/(x" = 1) - @ T\’,[x]/(x—f

cx)=co+crx+ - Fex" s (c(), e ), ..., c(E ).
Ifc(x) € R[x]/ (x"—l),thenvfrom Proposition 2.1, we can dedu_cen isan R[x]-module
homomorphism. Denote c(§') = A; and A(z) = Z?;ol A;7"7". The polynomial A(z)
is called Mattson-Solomon polynomial associated with c(x). Clearly,

1 1 ...

1 & ... gn!
(A()v R ] An—l) = (607 ) Cn—l)

1 l;);n—l é(n—l)z

For this reason A(z) is sometimes called the discrete Fourier transform of c¢(x). The
inverse transform is given by

1 _ .
cj=ZZAkg ko j=0,1,....,n—1.

Suppose that R is an m-th Galois extension ring of finite chain ring R. It is well
known that R is also a local nng with maximal ideal (y) and the residue field R/(y)
ery eleme e expressed uniquely in the form » = rp +

s—1 belong to the Teichmiiller set 7 =
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{0,1,¢,..., {qm_z}, where ¢ is a (g™ — 1)-th basic primitive element in R. Define the
Frobenius map ¢ on R to be the map induced by the map ro+r1y +- - -+r;_1y° ! >
rg +ri] y+-- +r;] 1 y*~1, acting as the identity on R. Since the degree of the extension
‘R over R is m, ¢" is the identity map. For any r € R, we deﬁne the trace of r to be
Trr/r(r) =r+ @)+ +¢™ 1 (r). Since ¢/ (r) = rO +r1 Y4l sl
we have
Trr/r(r) = Trr r(ro) + Trryr(r))y +---+ T"R/R(Vs—l))’s_l-

By the Hensel lift, there is a one-to-one correspondence between factors of x" — 1
and the g-cyclotomic cosets of Z,. Denote by U; (1 < i < r) the cyclotomic coset
corresponding to f;. Let R; be the Galois extension ring of R corresponding to the
basic irreducible polynomial f;, i.e., R; = R[x]/(fi). Then for a fixed u; € U;, we
have

,
nej = ZTrRi/R(A,-S_f”").
i=1

Sometimes this is called the trace representation of the cyclic code over finite chain
ring R.

In the following, we give a slightly different trace representation of the cyclic code
over finite chain ring R.

Proposition 2.3 Let € be a free cyclic code of length n over finite chain ring R.
Suppose that non-negative integers i1, ia, ..., iy are in different q-cyclotomic cosets
in Zy. Let & be an n-th primitive root of unity and £, 2, ... &% be roots of the
polynomial m(x) = Hljzl M (x), where m(x) is the generator polynomial of ¢+
and M j(x) is the minimal polynomial of & ij over R. Then for any codeword c(x) =
co+cix+ -+ cp_1x" L of €, we have

k
= > Trryra;E™),
=1

whereaj € R,v=0,1,...,n— 1, and R is the smallest Galois extension ring of R
containing the n-th primitive root of unity &.

Proof Let k = 1. Consider the following set

c= {(co,...,cn_l) € R" ¢, = Trr g(a;E"), v=0,1,...,n— 1}.

Obviously, C is a nonzero linear code of length n over R. If c4;(x) =

Zﬁ_(l) TrR/R(ajE”il)x” then ¢, e (x) = cq;(x)x in R[x]/(x" — 1) implying that
Cis cychc On the other hand the free cychc code (M1 (x)) is contained in the dual

ol Ll ‘”LlLI

L O (C. It should be noted that (M (x))+
to the degree of M (x), i.e., the mmlmal
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polynomial of £/ over R. Since R is a principal ideal ring, the cyclic code C is also
free over R implying that C = (M (x))*.

For k > 2, using the fact that any free cyclic code is the direct sum of some minimal
free cyclic codes, we can get the result immediately. O

It is easy to see that ¢, = Oif eacha; = 0,j = 1,2,..., k. But sometimes
¢y may be identically zero even if there is {l1, >, ..., I3} < {1,2, ..., k} such that
ar, #0,z=1,2,...,d. Therefore we could ask a question that when ¢, is zero except
the case aj = O foreach j € {1,2, ..., k}? In the following we give an answer about
this question. The next theorem is a generalization of the relevant result in reference
[4] from finite fields to rings, which will be used in the proof precess of Lemma 4.2.

Theorem 2.4 Let Uy;; be a q-cyclotomic coset containing vij mod n for each j =
1,2,..., k. Letay,az, ...,a; € R\{0}. Thenc, = OLfandonlyif|le~j| = Ty, #m
and Trp R, (aj) = 0, where R is the ty;;-th Galois extension ring of R for all
j=12,... k.

Proof First, we will prove ¢, = 0 if and only if Trg,r(a jf;””if ) = 0 for all
Jj=12,... k. Leta; = ajo+ajjy + -+ aj,s_lys_l, where aj, € T =
0,1,¢,...,29"72}, ¢ is a basic primitive element in R,j = 1,2,...,k and
g=0,1,...,s — 1. Then ¢, = 0 if and only if

k k «
D Trryr(a;g™) = D Trryrlajos™) +y D Trr rlajg*™)

j=1 j=1 j=1

k
+o Y T Y Trryrlaj s 1E%)
=1

=0

if and only if z];zl TrR/R(ajgévii) =O0forallg =0,1,...,s — 1if and only if
TrR/R(ang”if) =O0foral j=1,2,...,kand g =0,1,...,s — 1 if and only if
Trr r(a;jE?) =0forall j =1,2,..., k.

Second, we will prove Trgr r(a;E"/) = 0 if andgnly if |Uyi;| = tvi; # m and
Trp R, (aj) = 0. Since 1,;; necessarily divides m, R is a subring of R. Therefore
TrR/ﬁ makes sense. From a; € R \ {0}, we have |Uy;;| # m. By Theorem 2.2

in [4], we deduce that there are q(m_r""i)s aj’s in R such that TrR/R(ajE""J‘) = 0.

Tui (m—zyi;)s

N
J = q
For any b; in this kernel, we have TrR/R(bjsvi/) = Trﬁ/R(TrR/ﬁ(bjSUif)) =

The number of elements in the kernel of Trg IR is also ¢ /q

Trﬁ/R(svi/ TrR/ﬁ(bj)) = 0. Thus we have a; must be in the kernel of TrR/ﬁ.
Conversely, reading the above equality from left to right, replacing b; by a;, proves
the claim. O

ol ) Lil fy I—i.lbl 2 prine
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3 Module structure of quasi-cyclic codes

A linear code ¥ is called quasi-cyclic (QC) code if it is invariant under Tt for some
positive integer £. The smallest £ such that T(¢) = % is called the index of .
Clearly, £ is adivisor of N.Let N = nf. Define an R-module isomorphism as follows

p: R" — (Rx]/(x" — 1))
(UOO’ MR UO,@*]» lea MR vl,[*la MR Un71,07 MR U}’l*l,@*l)
= (Vo (x), .oy ve—1(x)),

where v; (x) = Z?;(l) vjixj, i=0,1,...,¢— 1. Then, for any

(Wo(x), v1(x), ..., ve—1(x)) € p(€)

we have [xvg(x), xv(x), ..., xvi—1(x)] € p(%). Therefore, € is a QC code of length
nf with index £ if and only if p (%) is an R[x]/(x" —1)-submodule of (R[x]/(x" —1))*.
This definition of the QC code is known as conventional row circulant. In this section,
we will introduce another module structure on a QC code by extending the work of

Lally [6].

Let v = (voo,.-->V0.—1s---sVUn—=1,0s--->VUn—10—1) € R™. Define an R-
module isomorphism between R"¢ and R" by associating with each ¢-tuple
(vi0, Vils -5 Vig—1),i = 0,1,...,n — 1, and the element v; € R represented as

vi = vig+vitE+---Fvp_ 17, where the set {1, &, €2, ..., £~1} forms an R-basis
of R. Then every element in R is in one-to-one correspondence with an element in
R". The operator T for some element

nt
(V00, V015 -+ s V0,6=15 -+ -5 Vn—1,05 Un—1,1, - - » Un—1,6—1) € R

corresponds to the element (v,_1, vo, . .., vy,—2) of R". Indicating the block positions
with increasing powers of x, the vector v € R™* can be associated with the polynomial
vo+uix+- -4 v_1x" 1 e R[x]. An R[x]/(x" — 1)-module isomorphism between
R" and R[x]/(x" — 1), which is defined as ¥ (v) = vg + vVix + -+ + vy_ 1 x" L.
In this setting, multiplication by x of any element of R[x]/(x" — 1) is equivalent
to applying T'* to operate the element of R"‘. It follows that there is a one-to-one
correspondence between R[x]/(x" — 1)-submodule of R[x]/(x" — 1) and the QC
code of length n¢ with index £ over R. Note that a QC code of length n¢ with index £
can also be viewed as an R-submodule of R[x]/(x" — 1) because of the equivalence
of R™ and R[x]/(x" — 1).

Let % be a QC code of length n¢ with index £ over R, and assume that generated by
elements vy (x), v2(x), ..., v, (x) € R[x]/(x" — 1) as an R[x]/{x" — 1)-submodule
of R[x]/(x" — 1). Then € = {a;(x)v1(x) + az(x)va(x) + - - + a, (x)v,(x)]| a; (x) €
R[x]/{(x" —1),i = 1,2,...,r}. As discussed above, % is also an R-submodule of
R[x]/{x"—1).Foran R-submodule of R[x]/(x" —1), ¥ is generated by the following
set {v1(x), ..., o), (), . x”_lvr(x)}.

If ¢ is generated by a single element v(x) as an R[x]/{x" — 1)-submodule of
R[x]/(x" — 1), then € is called the 1-generator QC code. Let the preimage of v(x)

@ Springer
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in R™ be v. Then for the 1-generator QC code %, we have % is generated by the
set {v, T, ..., TZ(”_I)v}. It is the conventional of row circulant definition of 1-
generator QC code. In fact, let v(x) = vo + vix + -+ - + Up_1x" L be a polynomial
in R[x]/{(x" — 1), where v; = vjo + vi1é +---+ vi,g_lgg_l,i =0,1,...,n—1.
Then v(x) becomes an £-tuple of polynomials over R each of degree at most n — 1
with the fixed R-basis {1, &, €2, ..., £~1}. Therefore, v(x) becomes an element of
(R[x]/{x" — 1))¢. So € is an R[x]/(x" — 1)-submodule of (R[x]/(x" — 1)), i.e. the
conventional row circulant definition of QC code.

Since R[x]/{(x" — 1) is a subring of R[x]/(x" — 1) and ¥ is an R[x]/(x" —
1)-submodule of R[x]/(x" — 1), itis in particular a submodule of an R[x]/(x" — 1)-
submodule of R[x]/(x" — 1), i.e. a cyclic code ¢ of length n over R. Therefore
d(€) > d(¥), where d(¢') and d(%’) are minimum Hamming distances of % and &,
respectively.

The next result extends Lally’s relevant result [6] to chain rings and its proof is the
same, hence is omitted.

Theorem 3.1 Let € be an r-generator QC code of length nf with index € over R and
generated by the set {vi(x), v2(x), ..., v,(x)}, where v;(x) € R[x]/{(x" —1),i =
1,2,...,r. deen % has a lowgr bound on the minimum Hamming distance given by
d(¢) = d(€)d(#), where € is the cyclic code of length n over R with generator
polynomials vi(x), v2(x), ..., v.(x), ie. € = (V1(X), ..., v (x)) and B is a linear
code of length £ generated by the set {V;j,i =1,2,...,r,j=0,1,...,n—1} C R¢
where each V;;j is the vector equivalent of the j-th coefficient of v;(x) with respect to
an R-basis {1,&, ..., Sl_l}.

In the rest of this section, we give an application of the above discussion. This
application leads to construction of QC codes over finite fields.

Let R = F; +ulFy +--- + uZ_IIE‘q, where u® = 0 and ¢ is a positive integer.
Consider a cyclic code % of length n generated by a polynomial v(x) over R. Let
% be a linear code of length n¢ spanned by {v(x), xv(x), ..., x" v (x)} over IFy.
Then % is a 1-generator QC code of length n¢ with index €. If v(x) = vp + vix +

v, x e R[x]/{x"™ — 1), then each v; is an £-tuple with respect to the fixed
Fy-basis {1, u, ..., uf_l} of R. Now let the set {vg, v1, ..., vy,—1} generate a linear
code % of length £ over F,. By Theorem 3.1, we have the following result directly.

Theorem 3.2 Let € be a QC code of length nt with index £ over finite field F,
n

generated by the set {v(x), xv(x),...,x _lv(x)}, where v(x) = vo +vix + -+ +
vo_1x" 1 e R[x]/(x" — 1). Then

(1) € has a lower bound on the minimum Hamming distance given by d(€) >
d(?f)d(%) where € is a Cyclzc code of length n over R generated by the poly-
nomial g(x) € R[x]/(x" — 1), and A is a linear code of length £ generated by
{vo, v1, ..., vu_1} where each v; is an L-tuple with respect to a fixed F-basis
{Lu,...,u"" "V of R.

(2) Ifthe cyclic code € in (1) is free and the generator polynomial g(x) has § — 1 con-
secutive roots.in some Galois extension ring of R, and if the set {vo, v1, ..., Uy—1}
generates a cyclic code % over finite field I, of length £ such that the generator
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polynomial of % has ¢ — 1 consecutive roots in some Galois extension field of F,
then d(€) > Se.

Example 3.3 Let R = Fa + ulF, 4+ u”F5. Suppose R = {0, 1, u, v, uv, u?, v2, v3},
where u3 =0,v= 1+u,v2 =1+4+u%0 = 1+u+u2,uv = u + u?. Ttis well
known that x7 — 1 = (x 4+ v) (&3 + uvx? + v2x + v3) (x> + vx2 + ux + v3), where
x 403, X34 uvx® 4+ v2x +v3 and x> 4+ vx? 4 ux +v3 are basic irreducible polynomials
over R. Let R = R[x]/(x> + uvx? 4+ v2x + v3). Since x> + uvx?> + v’x + v’ isa
basic primitive polynomial over R, the root & of x> + uvx? 4+ v2x + v is a primitive
element in R. Taking v(x) = (x + v3)(x3 + uv£2 +vix +03) = 43+ (I4+u+
u?)x% + u?x + (1 + u?), then the cyclic code ¢ of length 7 generated by v(x) is free
with the minimum Hamming distance of ¥ at least 4. The non-zero coefficients of
v(x) correspond to the elements (1,0, 1), (0,0, 1), (1, 1, 1), (1,0, 0), (1, 0, 0) with
respect to the Fo-basis {1, u, u>} of R and they generate a cyclic code Z of length 3
with the minimum Hamming distance 1 over [F,. Therefore, € is a 1-generator QC
code of length 21 with dimension 3 and minimum Hamming distance atleast4 x 1 = 4
over finite field F». In fact ¥ is a QC code with parameters [21, 3, 8] over F.

4 Trace representation of quasi-cyclic codes

Let x* — 1 = fif>... fr, where each f;,i = 1,2,...,r, is a basic irreducible
polynomial with degree ¢; over R. Then from Proposition 2.1, we have

(RIx1/(x" — 1) = @] (RIx1/(fi)".

Therefore if ¢ is a QC code of length n¢ with index £ over R then ¢’ = @®!_,%;, where
%i,i = 1,2,...,r,is a linear code of length £ over the ¢;-th Galois extension ring
‘Ri of R. This is called the canonical decomposition of the QC code €. The following
result of Ling-Solé [7] gives a trace representation for QC codes over finite chain rings.

Theorem 4.1 (cf. Theorem 5.1 [7]) Let x" — 1 = fifa... fr, where each f;,i =
1,2, ..., r, is the basic irreducible polynomial with degree £; over R. Denote R; =
R[x]/{fi). Let U; denote the q-cyclotomic coset mod n corresponding to f;. Fix a
representatives u; € U; from each cyclotomic coset. Let €; be a linear code of length
Lover R; foralli = 1,2,...,r. For¢; € 6; and each j = 0,1,...,n — 1, let the
vectorc; =i TrRr,/r (C;£77%). Then the code

Cg = {(c()’cl’ "'7cl1—l)|z:i € Cg[}

is a QC code of length nt with index £ over R. Conversely, every QC code of length
nt with index € over R is obtained through this construction.

Let R C R C R be Galois extension. If @ € R such that TrR/g(a)) = 1, then for

any ¥ € R we have Trg p(9) = Trr/p(w?).

Our goal is to extend the minimum Hamming distance bound of Giineri—-Ozbudak
[5] for QC codes to finite chain rings. The following result will be essential for this
purpose and it also extends the result of Proposition 4.6 in [5].
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Lemma 4.2 Let € be a QC code defined as above. Let w1, w3, ...,w, € R be
elements with Trr /g, (w;) = 1 foralli = 1,2,...,r. Then

(1) Any codeword (co,cq,...,ch—1) € C is of the form

,
cj = Trrr@wi& /")

i=1

forall j =0,1,...,n— 1.

(2) The columns of any codeword ¢ € € lie in a free cyclic code 9B of length n
over R, which dual code 2+ has roots €1 742 &£~ where £ is an n-th
primitive root of unity in R;

(3) For any column

o~

60 = (S TrRR@ia), s S Trr@ e~ ™0)),

where ¢; = (i1, Ci2,...,Ci¢) € Riandv = 1,2, ..., ¢, we have ¢, = 0 if and
onlyif¢1y =Cay=--=0Cry=0.

Proof (1) Clearly, >/, Trr g @wi§ ") = X1_, Trr, g @& ") = ¢
(2) For any column

& = (SI1TrR/R@vo), o B Trr@ooe "0
the v-th component ¢, = >/ Trr,g(C;,yw;§ ") where
cl = (alsa27 "-7ae) ERZ

and v = 1,2,...,¢. Since ¢; yw; € R, from Proposition 2.3, we have ¢, lies
in a free cyclic code # of length n over R, which dual code %+ has roots
gmm g gur

(3) ¢, = 0if and only if each v-th component is zero forall v =0, 1,...,n — 1 if
and only if X/_ Trr g (ciyw;E ") = 0if and only if Trg g (¢ yw;E~"") =0
foralli =1,2,...,r
) If €y = £y = -+ = £ = m, then Trr r(Ciyw;E~") = 0 for all

i=1,2,...,rifandonlyifc,, =¢2y =+ =¢p =0;

(i) If there exists a set {j1, j2, ..., ja} S {1,2,...,r} such that £; < m for all
k € {j1,j2,...,ja}and £, = m forall p € {1,2,...,7}\{j1,j2,...,jd},
then Trg g (c;, l,co,“.;‘_’”‘i) =O0foralli =1,2,...,rifand onlyifc,, , =0
and TrR R, (ce a),) = Cg]k Trr/Rr; (w) = cz = 0. Therefore, we have
provedc,,—01fandonly1fc1v_cz,,=- _crv_O O

As a consequence of Lemma 4.2, we can exhibit a minimum Hamming distance
bound for the QC code. We assume that

<> d(6)).
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For any nonempty subset Z = {iy,i2,...,i:} € {1,2,...,r}withl < i < iy <
c < iy <r,let Br = PBi,.i,....i, be afree cyclic code of length n over R, which
dual code ,%’%- hasroots § *i1 g7 2 ETM If Y £ T) € Ir C{1,2,...,r},then
PB1, C PB1, and hence d(Hz,) > d(HB1,).
For 7 defined above, we define

_|d(@)d(%y) it =1
| X (@) — d( Gy DA (B iy ip) i =2

Let J = Z\{i,} for some u € {2,3,...,t}. Then d7 > dz (see Lemma 4.7 in
(51)

The following extends Theorem 4.8 in [5] to QC codes over finite chain rings.

Theorem 4.3 Let € be a QC code as discussed above. Then the minimum Hamming
distance of € satisfies

d(®) > min{d,, drfl,r, cees d1,2,...,r}~

Proof Let c be anonzero codeword of €. Suppose that¢;, € €; forallk =1,2,...,1,
where {i1,i,...,i;} € 1,2,...,rand 1 <i; <ip < --- < iy <r.Ift =1, then
by Lemma 4.2 (2) there exists at least d(%)) nonzero columns in € implying the
minimum possible weight for such code is d(¢) > d(%;,)d(%;,). If t > 2, then the
weight for such code % is minimized if Supp(¢;,) € Supp(¢;,_,) € --- < Supp(c;,),

where Supp(¢;, ) denotes the nonzero coordinates of ¢;, forallk =1,2,...,¢. By the
proof process of Theorem 4.5 in [5], the lowest possible weight for such code in this
case is

.....

which implies that d(¢) > min{dz| Z = {i1,i2,...,i;} € {1,2,...,r} with i} <
ir < -+ < ;). Let NV C {1,2,...,r} and let i be the minimal element in N
Adjoining one element at a time, we have N C N} € --- C {i,i +1,...,r}. Then
dy > dp, = -+ = djiq1,..,r. Hence, the minimum Hamming distance of ¢ is equal
to d(cg) > min{dr,d,_l,r, .. -,d1,2,...,r}‘ O

Example 4.4 Consider a QC code % of length 14 with index 2 generated by
(ap(x), a;(x)) over R = F + ulF», where ag(x) = x* + x2 + x and a;(x) =
x* 4+ x3 4+ x2 4 1. Since (R[x]/(x” — 1))® = (R[x]/{x — IN? @& (R[x]/(x> + x% +
IN?2@®(R[x]/(x3+x+1))%, wehave € = @?zl%i where % is a linear code of length 2
generated by (1, 0) over R, %> is a linear code of length 2 generated by (1, x> +x 4 1)
over R[x]/(x3 + x? + 1) and &3 is a zero code over R[x]/(x> + x + 1). Clearly,
d(61) = d(¢2) = 1,d(%3) = 0. Hence Theorem 4.3 yields d(%) > min{6, 3} = 3.
In fact, its minimum Hamming distance is 7 actually.
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Example 4.5 ConsideraQC code € of length 21 with index 3 generated by two vectors
(x2 a3, x4, x40 +x6) and (0, x3+ x4 %3 +x4) over R = [Fy + ulf,.
Let R = Fg + uFg. Then € can be viewed as an R[x]/(x’ — 1)-submodule of
RIx1/(x7 — 1), and generated by (1 +& +&2)x2 4+ (1 + & +&2)x + &2x> +£2x6 and
(€ +E2)x3 + (£ +£%)x*. Then, by Theorem 3.1, one can verify that d(%’) > 2. Since
(RIx1/(x7=1)* = (RIx1/(x = )P @ (RIx]/ (P +2 + 1) @ (RIx]/(x* +x + 1),
we have ¢ = 691-3:1%,- where % is a zero code of length 3 over R, %> is a linear code of
length 3 generated by (1, 1, x> 4 1) and (0, x, x) over R[x]/(x> 4+ x>+ 1) and €3 is a
linear code of length 3 generated by (x24x+1, x24x+1, x24+ 1 and (0, x2+1, x2+1)
over R[x]/(x> + x + 1). Clearly, d(%;) = 0 and d(%)) = d(%>) = 2. Hence, by
Theorem 4.3, d(%) > min{8, 4} = 4. In fact, its minimum Hamming distance is 4
actually. This example shows that sometimes Theorem 4.3 can give a sharp bound
on minimum Hamming distance of QC codes. This property can also be found in
Examples of [5].
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