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Abstract In this short correspondence, we mainly consider quasi-cyclic (QC) codes
over finite chain rings. We study module structures and trace representations of QC
codes, which lead to some lower bounds on the minimum Hamming distance of QC
codes.
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1 Introduction

Let R denote a finite chain ring with nilpotency index s, γ a generator of its maximal
ideal and Fq the residue field R/〈γ 〉. The ideals of R form a chain as 〈0〉 = 〈γ s〉 ⊆
〈γ s−1〉 ⊆ · · · ⊆ 〈γ 〉 ⊆ 〈1〉 = R.

Define the ring surjective homomorphism − : R → R = Fq by r �→ r , where r
denotes r +〈γ 〉. Extending the ring homomorphism − : R[x] → Fq [x] by r0 + r1x +
· · · + rn xn �→ r0 + r1x + · · · + rn xn , and the image of f (x) ∈ R[x] under the map
− is denoted by f (x) ∈ Fq [x].

A polynomial f (x) ∈ R[x] is said to be basic irreducible if f (x) is irreducible
in Fq [x], and basic primitive if f (x) is primitive in Fq [x]. If f (x) is a monic basic
irreducible polynomial with degree m over R, then the residue class ring R[x]/〈 f (x)〉
is called the m-th Galois extension ring of R, and denoted as R. R is also a finite
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chain ring, with maximal ideal 〈γ 〉 and nilpotency index s. If ξ is a root of f (x), then
R = R[ξ ], i.e.,R is a free module of rank m over R with {1, ξ, . . . , ξm−1} as a basis.
If f (x) is a basic primitive polynomial over R, and ξ is the root of f (x), then the
order of ξ is qm − 1. Let the Teichmüller set be T = {0, 1, ξ, . . . , ξqm−2}. Then each
element r of R can be expressed uniquely as r = r0 + r1γ + · · · + rs−1γ

s−1, where
r0, r1, . . . , rs−1 ∈ T . Further information on finite chain rings can be found in [8].

Quasi-cyclic (QC) codes are an important class of linear codes and have good
algebra structures [2,3,5–7]. They have proved to be a rich source of good codes
[1,3,10]. Recently, there are more and more interesting work on QC codes over finite
chain rings [1,2,7,10]. Minimum Hamming distance related to the ability of error-
correcting is a very important parameter of codes, and its estimation is crucial to
search or construct good codes. This is one of the motivations to generalize some
bounds on the minimum Hamming distance of QC codes over finite fields to finite
chain rings. In [6], Lally studied the structural properties of QC codes over finite
fields. A lower bound on the minimum Hamming distance of a QC code in terms of
the minimum Hamming distance of one cyclic code and one linear code related to the
generators of QC code was given. In [5], Güneri–Özbudak gave another lower bound
on the minimum Hamming distance of a QC code over finite fields by using the trace
representation of a QC code.

In this short correspondence, following the approached given in [5,6], we also
present two different minimum Hamming distance bounds on QC codes over finite
chain rings. The correspondence is organized as follows. In Sect. 2, we discuss trace
representations of cyclic codes. In Sect. 3, we discuss module structures of QC codes
over finite chain rings, which are generalizations of QC codes over finite fields. This
point of view for studying QC codes could give a lower bound on the minimum
Hamming distance and a construction method of linear codes over finite fields. In
Sect. 4, we discuss the trace representation of QC codes over finite chain rings, which
lead to another lower bound on the minimum Hamming distance.

2 Cyclic codes

Let Rn be the set of n-tuples over R. C is a linear code of length n over R if and
only if C is an R-submodule of Rn . Let T be the cyclic shift operator T : Rn → Rn ,
which transforms v = (v0, v1, . . . , vn−1) into vT = (vn−1, v0, . . . , vn−2). A linear
code C is called the cyclic code of length n if it is invariant under T . We assume n
to be a positive integer not divisible by the characteristic of the finite field F = Fq .
Therefore xn − 1 has a unique decomposition as a product of monic basic irreducible
pairwise coprime polynomials in R[x]. Let f (x) be a factor of xn − 1 over R. Denote
̂f (x) = (xn − 1)/ f (x). It is well known that the cyclic code of length n over R can
be regarded as an ideal of R[x]/〈xn − 1〉.
Proposition 2.1 (cf. [11] Theorem 2.9) Let f1, f2, . . . , fr be pairwise coprime monic
polynomials of degree � 1 over R, f = f1 f2 . . . fr and R f = R[x]/〈 f 〉. Let ̂fi =
f/ fi . Then there exist ai , bi ∈ R[x] such that ai fi + bi ̂fi = 1. Let ei = bi ̂fi + 〈 f 〉.
Then

(1) e1, e2, . . . , er are mutually orthogonal non-zero idempotents of R f ;
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(2) 1 = e1 + e2 + · · · + er in R f ;
(3) Let R f ei = 〈ei 〉 be the principal ideal of R f generated by ei . Then ei is the

identity of R f ei and R f ei = 〈 ̂fi + 〈 f 〉〉;
(4) R f = ⊕r

i=1R f ei ;
(5) The map R[x]/〈 fi 〉 → R f ei defined by g +〈 fi 〉 �→ 〈g +〈 f 〉〉ei is a well-defined

isomorphism of rings;
(6) R f = R[x]/〈 f 〉 ∼= ⊕r

i=1R[x]/〈 fi 〉.
Let C be a cyclic code of length n generated by g(x) over R. Unlike the case over

finite fields, g(x) may be not a divisor of xn − 1. It is related to whether C is a free
R-module or not.

Proposition 2.2 (cf. [9] Proposition 4.11) Let C be a linear code over finite chain
ring R. Then the following properties are equivalent

(1) C is the Hensel lift of a cyclic code over R;
(2) C is a cyclic code and free;
(3) There exists a polynomial g(x) ∈ R[x] such that C = 〈g(x)〉 and g(x)|xn − 1.

Suppose that ξ is an n-th primitive root of unity and R is the smallest Galois
extension ring of R containing the n-th primitive root of unity ξ . Therefore xn − 1 =
(x − 1)(x − ξ) · · · (x − ξn−1) over R. Define the map π as follows

π : R[x]/〈xn − 1〉 → ⊕n−1
i=0R[x]/〈x − ξ i 〉

c(x) = c0 + c1x + · · · + cn−1xn−1 �→ (c(1), c(ξ), . . . , c(ξn−1)).

If c(x) ∈ R[x]/〈xn−1〉, then fromProposition 2.1,we candeduceπ is an R[x]-module
homomorphism. Denote c(ξ i ) = Ai and A(z) = ∑n−1

i=0 Ai zn−i . The polynomial A(z)
is called Mattson-Solomon polynomial associated with c(x). Clearly,

(A0, . . . , An−1) = (c0, . . . , cn−1)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1 . . . 1

1 ξ . . . ξn−1

...
...

...
...

1 ξn−1 . . . ξ (n−1)2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

For this reason A(z) is sometimes called the discrete Fourier transform of c(x). The
inverse transform is given by

c j = 1

n

n−1
∑

k=0

Akξ
− jk, j = 0, 1, . . . , n − 1.

Suppose that R is an m-th Galois extension ring of finite chain ring R. It is well
known thatR is also a local ring with maximal ideal 〈γ 〉 and the residue fieldR/〈γ 〉
is Fqm . Every element r of R can also be expressed uniquely in the form r = r0 +
r1γ + · · · + rs−1γ

s−1, where r0, r1, . . . , rs−1 belong to the Teichmüller set T =
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{0, 1, ζ, . . . , ζ qm−2}, where ζ is a (qm −1)-th basic primitive element inR. Define the
Frobenius map φ onR to be themap induced by themap r0+r1γ +· · ·+rs−1γ

s−1 �→
rq
0 +rq

1 γ +· · ·+rq
s−1γ

s−1, acting as the identity on R. Since the degree of the extension
R over R is m, φm is the identity map. For any r ∈ R, we define the trace of r to be

T rR/R(r) = r + φ(r) + · · · + φm−1(r). Since φi (r) = rqi

0 + rqi

1 γ + · · · + rqi

s−1γ
s−1,

we have

T rR/R(r) = T rR/R(r0) + T rR/R(r1)γ + · · · + T rR/R(rs−1)γ
s−1.

By the Hensel lift, there is a one-to-one correspondence between factors of xn − 1
and the q-cyclotomic cosets of Zn . Denote by Ui (1 ≤ i ≤ r) the cyclotomic coset
corresponding to fi . Let Ri be the Galois extension ring of R corresponding to the
basic irreducible polynomial fi , i.e., Ri = R[x]/〈 fi 〉. Then for a fixed ui ∈ Ui , we
have

nc j =
r

∑

i=1

T rRi /R(Aiξ
− jui ).

Sometimes this is called the trace representation of the cyclic code over finite chain
ring R.

In the following, we give a slightly different trace representation of the cyclic code
over finite chain ring R.

Proposition 2.3 Let C be a free cyclic code of length n over finite chain ring R.
Suppose that non-negative integers i1, i2, . . . , ik are in different q-cyclotomic cosets
in Zn. Let ξ be an n-th primitive root of unity and ξ i1, ξ i2 , . . . , ξ ik be roots of the
polynomial m(x) = ∏k

j=1 M j (x), where m(x) is the generator polynomial of C⊥

and M j (x) is the minimal polynomial of ξ i j over R. Then for any codeword c(x) =
c0 + c1x + · · · + cn−1xn−1 of C , we have

cv =
k

∑

j=1

T rR/R(a jξ
vi j ),

where a j ∈ R, v = 0, 1, . . . , n − 1, and R is the smallest Galois extension ring of R
containing the n-th primitive root of unity ξ .

Proof Let k = 1. Consider the following set

C =
{

(c0, . . . , cn−1) ∈ Rn| cv = T rR/R(a jξ
vi1), v = 0, 1, . . . , n − 1

}

.

Obviously, C is a nonzero linear code of length n over R. If ca j (x) =
∑n−1

v=0 T rR/R(a jξ
vi1)xv , then ca j ξ

−i1 (x) = ca j (x)x in R[x]/〈xn − 1〉 implying that
C is cyclic. On the other hand the free cyclic code 〈M1(x)〉 is contained in the dual
code C⊥ of C, which implies that 〈M1(x)〉⊥ ⊇ C. It should be noted that 〈M1(x)〉⊥ is
a minimal free cyclic code with rank equal to the degree of M1(x), i.e., the minimal
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polynomial of ξ i1 over R. Since R is a principal ideal ring, the cyclic code C is also
free over R implying that C = 〈M1(x)〉⊥.

For k ≥ 2, using the fact that any free cyclic code is the direct sum of someminimal
free cyclic codes, we can get the result immediately. ��

It is easy to see that cv = 0 if each a j = 0, j = 1, 2, . . . , k. But sometimes
cv may be identically zero even if there is {l1, l2, . . . , ld} ⊆ {1, 2, . . . , k} such that
alz �= 0, z = 1, 2, . . . , d. Thereforewe could ask a question thatwhen cv is zero except
the case a j = 0 for each j ∈ {1, 2, . . . , k}? In the following we give an answer about
this question. The next theorem is a generalization of the relevant result in reference
[4] from finite fields to rings, which will be used in the proof precess of Lemma 4.2.

Theorem 2.4 Let Uvi j be a q-cyclotomic coset containing vi j mod n for each j =
1, 2, . . . , k. Let a1, a2, . . . , ak ∈ R\{0}. Then cv = 0 if and only if |Uvi j | = τvi j �= m
and T rR/ ˜R j

(a j ) = 0, where ˜R j is the τvi j -th Galois extension ring of R for all
j = 1, 2, . . . , k.

Proof First, we will prove cv = 0 if and only if T rR/R(a jξ
vi j ) = 0 for all

j = 1, 2, . . . , k. Let a j = a j0 + a j1γ + · · · + a j,s−1γ
s−1, where a jg ∈ T =

{0, 1, ζ, . . . , ζ qm−2}, ζ is a basic primitive element in R, j = 1, 2, . . . , k and
g = 0, 1, . . . , s − 1. Then cv = 0 if and only if

k
∑

j=1

T rR/R(a jξ
vi j ) =

k
∑

j=1

T rR/R(a j0ξ
vi j ) + γ

k
∑

j=1

T rR/R(a j1ξ
vi j )

+ · · · + γ s−1
k

∑

j=1

T rR/R(a j,s−1ξ
vi j )

= 0

if and only if
∑k

j=1 T rR/R(a jgξ
vi j ) = 0 for all g = 0, 1, . . . , s − 1 if and only if

T rR/R(a jgξ
vi j ) = 0 for all j = 1, 2, . . . , k and g = 0, 1, . . . , s − 1 if and only if

T rR/R(a jξ
vi j ) = 0 for all j = 1, 2, . . . , k.

Second, we will prove T rR/R(a jξ
vi j ) = 0 if and only if |Uvi j | = τvi j �= m and

T rR/ ˜R j
(a j ) = 0. Since τvi j necessarily divides m, ˜R is a subring of R. Therefore

T rR/ ˜R makes sense. From a j ∈ R \ {0}, we have |Uvi j | �= m. By Theorem 2.2

in [4], we deduce that there are q(m−τvi j )s a j ’s in R such that T rR/R(a jξ
vi j ) = 0.

The number of elements in the kernel of T rR/ ˜R is also qms/qτvi j s = q(m−τvi j )s .

For any b j in this kernel, we have T rR/R(b jξ
vi j ) = T r

˜R/R(T rR/ ˜R(b jξ
vi j )) =

T r
˜R/R(ξvi j T rR/ ˜R(b j )) = 0. Thus we have a j must be in the kernel of T rR/ ˜R.

Conversely, reading the above equality from left to right, replacing b j by a j , proves
the claim. ��
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3 Module structure of quasi-cyclic codes

A linear code C is called quasi-cyclic (QC) code if it is invariant under T � for some
positive integer �. The smallest � such that T �(C ) = C is called the index of C .
Clearly, � is a divisor of N . Let N = n�. Define an R-module isomorphism as follows

ρ : Rn� → (R[x]/〈xn − 1〉)�
(v00, . . . , v0,�−1, v10, . . . , v1,�−1, . . . , vn−1,0, . . . , vn−1,�−1)

�→ (v0(x), . . . , v�−1(x)),

where vi (x) = ∑n−1
j=0 v j i x j , i = 0, 1, . . . , � − 1. Then, for any

(v0(x), v1(x), . . . , v�−1(x)) ∈ ρ(C )

we have [xv0(x), xv1(x), . . . , xv�−1(x)] ∈ ρ(C ). Therefore,C is aQC code of length
n�with index � if and only ifρ(C ) is an R[x]/〈xn−1〉-submodule of (R[x]/〈xn−1〉)�.
This definition of the QC code is known as conventional row circulant. In this section,
we will introduce another module structure on a QC code by extending the work of
Lally [6].

Let v = (v00, . . . , v0,�−1, . . . , vn−1,0, . . . , vn−1,�−1) ∈ Rn�. Define an R-
module isomorphism between Rn� and Rn by associating with each �-tuple
(vi0, vi1, . . . , vi,�−1), i = 0, 1, . . . , n − 1, and the element vi ∈ R represented as
vi = vi0 +vi1ξ +· · ·+v�−1ξ

�−1, where the set {1, ξ, ξ2, . . . , ξ �−1} forms an R-basis
ofR. Then every element in Rn� is in one-to-one correspondence with an element in
Rn . The operator T � for some element

(v00, v01, . . . , v0,�−1, . . . , vn−1,0, vn−1,1, . . . , vn−1,�−1) ∈ Rn�

corresponds to the element (vn−1, v0, . . . , vn−2) ofRn . Indicating the block positions
with increasing powers of x , the vector v ∈ Rn� can be associated with the polynomial
v0 +v1x +· · ·+vn−1xn−1 ∈ R[x]. An R[x]/〈xn −1〉-module isomorphism between
Rn� and R[x]/〈xn − 1〉, which is defined as ψ(v) = v0 + v1x + · · · + vn−1xn−1.
In this setting, multiplication by x of any element of R[x]/〈xn − 1〉 is equivalent
to applying T � to operate the element of Rn�. It follows that there is a one-to-one
correspondence between R[x]/〈xn − 1〉-submodule of R[x]/〈xn − 1〉 and the QC
code of length n� with index � over R. Note that a QC code of length n� with index �

can also be viewed as an R-submodule of R[x]/〈xn − 1〉 because of the equivalence
of Rn� and R[x]/〈xn − 1〉.

LetC be a QC code of length n�with index � over R, and assume that generated by
elements v1(x), v2(x), . . . , vr (x) ∈ R[x]/〈xn − 1〉 as an R[x]/〈xn − 1〉-submodule
ofR[x]/〈xn − 1〉. Then C = {a1(x)v1(x) + a2(x)v2(x) + · · · + ar (x)vr (x)| ai (x) ∈
R[x]/〈xn − 1〉, i = 1, 2, . . . , r}. As discussed above, C is also an R-submodule of
R[x]/〈xn −1〉. For an R-submodule ofR[x]/〈xn −1〉,C is generated by the following
set {v1(x), . . . , xn−1v1(x), . . . , vr (x), . . . , xn−1vr (x)}.

If C is generated by a single element v(x) as an R[x]/〈xn − 1〉-submodule of
R[x]/〈xn − 1〉, then C is called the 1-generator QC code. Let the preimage of v(x)
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in Rn� be v. Then for the 1-generator QC code C , we have C is generated by the
set {v, T �v, . . . , T �(n−1)v}. It is the conventional of row circulant definition of 1-
generator QC code. In fact, let v(x) = v0 + v1x + · · · + vn−1xn−1 be a polynomial
in R[x]/〈xn − 1〉, where vi = vi0 + vi1ξ + · · · + vi,�−1ξ

�−1, i = 0, 1, . . . , n − 1.
Then v(x) becomes an �-tuple of polynomials over R each of degree at most n − 1
with the fixed R-basis {1, ξ, ξ2, . . . , ξ �−1}. Therefore, v(x) becomes an element of
(R[x]/〈xn − 1〉)�. So C is an R[x]/〈xn − 1〉-submodule of (R[x]/〈xn − 1〉)�, i.e. the
conventional row circulant definition of QC code.

Since R[x]/〈xn − 1〉 is a subring of R[x]/〈xn − 1〉 and C is an R[x]/〈xn −
1〉-submodule ofR[x]/〈xn − 1〉, it is in particular a submodule of anR[x]/〈xn − 1〉-
submodule of R[x]/〈xn − 1〉, i.e. a cyclic code ˜C of length n over R. Therefore
d(C ) ≥ d( ˜C ), where d(C ) and d( ˜C ) are minimum Hamming distances of C and ˜C ,
respectively.

The next result extends Lally’s relevant result [6] to chain rings and its proof is the
same, hence is omitted.

Theorem 3.1 Let C be an r-generator QC code of length n� with index � over R and
generated by the set {v1(x), v2(x), . . . , vr (x)}, where vi (x) ∈ R[x]/〈xn − 1〉, i =
1, 2, . . . , r . Then C has a lower bound on the minimum Hamming distance given by
d(C ) ≥ d( ˜C )d(B), where ˜C is the cyclic code of length n over R with generator
polynomials v1(x), v2(x), . . . , vr (x), i.e. ˜C = 〈v1(x), . . . , vr (x)〉 and B is a linear
code of length � generated by the set {Vi j , i = 1, 2, . . . , r, j = 0, 1, . . . , n − 1} ⊆ R�

where each Vi j is the vector equivalent of the j-th coefficient of vi (x) with respect to
an R-basis {1, ξ, . . . , ξ �−1}.

In the rest of this section, we give an application of the above discussion. This
application leads to construction of QC codes over finite fields.

Let R = Fq + uFq + · · · + u�−1
Fq , where u� = 0 and � is a positive integer.

Consider a cyclic code ˜C of length n generated by a polynomial v(x) over R. Let
C be a linear code of length n� spanned by {v(x), xv(x), . . . , xn−1v(x)} over Fq .
Then C is a 1-generator QC code of length n� with index �. If v(x) = v0 + v1x +
· · · + vn−1xn−1 ∈ R[x]/〈xn − 1〉, then each vi is an �-tuple with respect to the fixed
Fq -basis {1, u, . . . , u�−1} of R. Now let the set {v0, v1, . . . , vn−1} generate a linear
code B of length � over Fq . By Theorem 3.1, we have the following result directly.

Theorem 3.2 Let C be a QC code of length n� with index � over finite field Fq

generated by the set {v(x), xv(x), . . . , xn−1v(x)}, where v(x) = v0 + v1x + · · · +
vn−1xn−1 ∈ R[x]/〈xn − 1〉. Then

(1) C has a lower bound on the minimum Hamming distance given by d(C ) ≥
d( ˜C )d(B), where ˜C is a cyclic code of length n over R generated by the poly-
nomial g(x) ∈ R[x]/〈xn − 1〉, and B is a linear code of length � generated by
{v0, v1, . . . , vn−1} where each vi is an �-tuple with respect to a fixed Fq -basis
{1, u, . . . , u�−1} of R.

(2) If the cyclic code ˜C in (1) is free and the generator polynomial g(x) has δ−1 con-
secutive roots in some Galois extension ring of R, and if the set {v0, v1, . . . , vn−1}
generates a cyclic code B over finite field Fq of length � such that the generator
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polynomial of B has ε −1 consecutive roots in some Galois extension field of Fq ,
then d(C ) ≥ δε.

Example 3.3 Let R = F2 + uF2 + u2
F2. Suppose R = {0, 1, u, v, uv, u2, v2, v3},

where u3 = 0, v = 1 + u, v2 = 1 + u2, v3 = 1 + u + u2, uv = u + u2. It is well
known that x7 − 1 = (x + v3)(x3 + uvx2 + v2x + v3)(x3 + vx2 + ux + v3), where
x +v3, x3+uvx2+v2x +v3 and x3+vx2+ux +v3 are basic irreducible polynomials
over R. Let R = R[x]/〈x3 + uvx2 + v2x + v3〉. Since x3 + uvx2 + v2x + v3 is a
basic primitive polynomial over R, the root ξ of x3 + uvx2 + v2x + v3 is a primitive
element inR. Taking v(x) = (x + v3)(x3 + uvx2 + v2x + v3) = x4 + x3 + (1+ u +
u2)x2 + u2x + (1+ u2), then the cyclic code ˜C of length 7 generated by v(x) is free
with the minimum Hamming distance of ˜C at least 4. The non-zero coefficients of
v(x) correspond to the elements (1, 0, 1), (0, 0, 1), (1, 1, 1), (1, 0, 0), (1, 0, 0) with
respect to the F2-basis {1, u, u2} of R and they generate a cyclic code B of length 3
with the minimum Hamming distance 1 over F2. Therefore, C is a 1-generator QC
code of length 21with dimension 3 andminimumHamming distance at least 4×1 = 4
over finite field F2. In fact C is a QC code with parameters [21, 3, 8] over F2.

4 Trace representation of quasi-cyclic codes

Let xn − 1 = f1 f2 . . . fr , where each fi , i = 1, 2, . . . , r , is a basic irreducible
polynomial with degree �i over R. Then from Proposition 2.1, we have

(R[x]/〈xn − 1〉)� ∼= ⊕r
i=1(R[x]/〈 fi 〉)�.

Therefore ifC is a QC code of length n�with index � over R thenC = ⊕r
i=1Ci , where

Ci , i = 1, 2, . . . , r , is a linear code of length � over the �i -th Galois extension ring
Ri of R. This is called the canonical decomposition of the QC code C . The following
result of Ling-Solé [7] gives a trace representation for QC codes over finite chain rings.

Theorem 4.1 (cf. Theorem 5.1 [7]) Let xn − 1 = f1 f2 . . . fr , where each fi , i =
1, 2, . . . , r , is the basic irreducible polynomial with degree �i over R. Denote Ri =
R[x]/〈 fi 〉. Let Ui denote the q-cyclotomic coset mod n corresponding to fi . Fix a
representatives ui ∈ Ui from each cyclotomic coset. Let Ci be a linear code of length
� over Ri for all i = 1, 2, . . . , r . For c̃i ∈ Ci and each j = 0, 1, . . . , n − 1, let the
vector c j = ∑r

i=1 T rRi /R (̃ciξ
− jui ). Then the code

C = {(c0, c1, . . . , cn−1)| c̃i ∈ Ci }

is a QC code of length n� with index � over R. Conversely, every QC code of length
n� with index � over R is obtained through this construction.

Let R ⊂ ˜R ⊂ R be Galois extension. If ω ∈ R such that T rR/˜R(ω) = 1, then for

any ϑ ∈ ˜R we have T r
˜R/R(ϑ) = T rR/R(ωϑ).

Our goal is to extend the minimum Hamming distance bound of Güneri–Ozbudak
[5] for QC codes to finite chain rings. The following result will be essential for this
purpose and it also extends the result of Proposition 4.6 in [5].
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Lemma 4.2 Let C be a QC code defined as above. Let ω1, ω2, . . . , ωr ∈ R be
elements with T rR/Ri (ωi ) = 1 for all i = 1, 2, . . . , r . Then

(1) Any codeword (c0, c1, . . . , cn−1) ∈ C is of the form

c j =
r

∑

i=1

T rR/R (̃ciωiξ
− jui )

for all j = 0, 1, . . . , n − 1.
(2) The columns of any codeword c ∈ C lie in a free cyclic code B of length n

over R, which dual code B⊥ has roots ξ−u1 , ξ−u2 , . . . , ξ−ur , where ξ is an n-th
primitive root of unity in R;

(3) For any column

ĉν =
(

�r
i=1T rR/R (̃ci,νωi ), . . . , �

r
i=1T rR/R (̃ci,νωiξ

−(n−1)ui )
)

,

where c̃i = (̃ci1, c̃i2, . . . , c̃i�) ∈ Ri and ν = 1, 2, . . . , �, we have ĉν = 0 if and
only if c̃1,ν = c̃2,ν = · · · = c̃r,ν = 0.

Proof (1) Clearly,
∑r

i=1 T rR/R (̃ciωiξ
− jui ) = ∑r

i=1 T rRi /R (̃ciξ
− jui ) = c j ;

(2) For any column

ĉν =
(

�r
i=1T rR/R (̃ci,νωi ), . . . , �

r
i=1T rR/R (̃ci,νωiξ

−(n−1)ui )
)

,

the v-th component ĉv = ∑r
i=1 T rR/R (̃ci,νωiξ

−vui ) where

c̃i = (̃ci1, c̃i2, . . . , c̃i�) ∈ Ri

and ν = 1, 2, . . . , �. Since c̃i,νωi ∈ R, from Proposition 2.3, we have ĉν lies
in a free cyclic code B of length n over R, which dual code B⊥ has roots
ξ−u1, ξ−u2 , . . . , ξ−ur ;

(3) ĉν = 0 if and only if each v-th component is zero for all v = 0, 1, . . . , n − 1 if
and only if �r

i=1T rR/R (̃ci,νωiξ
−vui ) = 0 if and only if T rR/R (̃ci,νωiξ

−vui ) = 0
for all i = 1, 2, . . . , r .
(i) If �1 = �2 = · · · = �r = m, then T rR/R (̃ci,νωiξ

−vui ) = 0 for all
i = 1, 2, . . . , r if and only if c̃1,ν = c̃2,ν = · · · = c̃r,ν = 0;

(ii) If there exists a set { j1, j2, . . . , jd} ⊆ {1, 2, . . . , r} such that � jk < m for all
k ∈ { j1, j2, . . . , jd} and �p = m for all p ∈ {1, 2, . . . , r}\{ j1, j2, . . . , jd},
then T rR/R (̃ci,νωiξ

−vui ) = 0 for all i = 1, 2, . . . , r if and only if c̃�p,ν = 0
and T rR/Ri (̃c� jk

ωi ) = c̃� jk
T rR/Ri (ωi ) = c̃� jk

= 0. Therefore, we have
proved ĉν = 0 if and only if c̃1,ν = c̃2,ν = · · · = c̃r,ν = 0. ��

As a consequence of Lemma 4.2, we can exhibit a minimum Hamming distance
bound for the QC code. We assume that

d(C1) ≥ d(C2) ≥ · · · ≥ d(Cr ).
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For any nonempty subset I = {i1, i2, . . . , it } ⊆ {1, 2, . . . , r} with 1 ≤ i1 < i2 <

· · · < it ≤ r , let BI = Bi1,i2,...,it be a free cyclic code of length n over R, which
dual codeB⊥

I has roots ξ−ui1 , ξ−ui2 , . . . , ξ−uit . If ∅ �= I1 ⊂ I2 ⊆ {1, 2, . . . , r}, then
BI1 ⊂ BI2 and hence d(BI1) ≥ d(BI2).

For I defined above, we define

dI = di1,i2,...,it

=
{

d(Ci1)d(Bi1) if t = 1
∑t

j=1(d(Ci j ) − d(Ci j+1))d(Bi1,i2,...,i j ) if t = 2.

Let J = I\{iμ} for some μ ∈ {2, 3, . . . , t}. Then dJ ≥ dI (see Lemma 4.7 in
[5].)

The following extends Theorem 4.8 in [5] to QC codes over finite chain rings.

Theorem 4.3 Let C be a QC code as discussed above. Then the minimum Hamming
distance of C satisfies

d(C ) ≥ min{dr , dr−1,r , . . . , d1,2,...,r }.

Proof Let c be a nonzero codeword ofC . Suppose that c̃ik ∈ Ci for all k = 1, 2, . . . , t ,
where {i1, i2, . . . , it } ⊆ 1, 2, . . . , r and 1 ≤ i1 < i2 < · · · < it ≤ r . If t = 1, then
by Lemma 4.2 (2) there exists at least d(C1) nonzero columns in C implying the
minimum possible weight for such code is d(C ) ≥ d(Ci1)d(Bi1). If t ≥ 2, then the
weight for such code C is minimized if Supp(̃cit ) ⊆ Supp(̃cit−1) ⊆ · · · ⊆ Supp(̃ci1),
where Supp(̃cik ) denotes the nonzero coordinates of c̃ik for all k = 1, 2, . . . , t . By the
proof process of Theorem 4.5 in [5], the lowest possible weight for such code in this
case is

d(C ) ≥ dI = (d(Ci1) − d(Ci2))d(Bi1) + · · · + d(Cit )dBi1,i2,...,it ,

which implies that d(C ) ≥ min{dI | I = {i1, i2, . . . , it } ⊆ {1, 2, . . . , r} wi th i1 <

i2 < · · · < it }. Let N ⊆ {1, 2, . . . , r} and let i be the minimal element in N .
Adjoining one element at a time, we have N ⊆ N1 ⊆ · · · ⊆ {i, i + 1, . . . , r}. Then
dN ≥ dN1 ≥ · · · ≥ di,i+1,...,r . Hence, the minimum Hamming distance of C is equal
to d(C ) ≥ min{dr , dr−1,r , . . . , d1,2,...,r }. ��
Example 4.4 Consider a QC code C of length 14 with index 2 generated by
(a0(x), a1(x)) over R = F2 + uF2, where a0(x) = x4 + x2 + x and a1(x) =
x4 + x3 + x2 + 1. Since (R[x]/〈x7 − 1〉)2 ∼= (R[x]/〈x − 1〉)2 ⊕ (R[x]/〈x3 + x2 +
1〉)2⊕(R[x]/〈x3+x+1〉)2, we haveC = ⊕3

i=1Ci whereC1 is a linear code of length 2
generated by (1, 0) over R,C2 is a linear code of length 2 generated by (1, x2+ x +1)
over R[x]/〈x3 + x2 + 1〉 and C3 is a zero code over R[x]/〈x3 + x + 1〉. Clearly,
d(C1) = d(C2) = 1, d(C3) = 0. Hence Theorem 4.3 yields d(C ) ≥ min{6, 3} = 3.
In fact, its minimum Hamming distance is 7 actually.
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Example 4.5 Consider aQCcodeC of length 21with index 3 generated by twovectors
(x2 + x3, x2 + x3, x2 + x3 + x5 + x6) and (0, x3 + x4, x3 + x4) over R = F2 + uF2.
Let R = F8 + uF8. Then C can be viewed as an R[x]/〈x7 − 1〉-submodule of
R[x]/〈x7 − 1〉, and generated by (1+ ξ + ξ2)x2 + (1+ ξ + ξ2)x + ξ2x5 + ξ2x6 and
(ξ + ξ2)x3 + (ξ + ξ2)x4. Then, by Theorem 3.1, one can verify that d(C ) ≥ 2. Since
(R[x]/〈x7−1〉)3 ∼= (R[x]/〈x −1〉)3⊕(R[x]/〈x3+x2+1〉)3⊕(R[x]/〈x3+x +1〉)3,
we haveC = ⊕3

i=1Ci whereC1 is a zero code of length 3 over R,C2 is a linear code of
length 3 generated by (1, 1, x3 + 1) and (0, x, x) over R[x]/〈x3 + x2 + 1〉 and C3 is a
linear code of length 3 generated by (x2+x+1, x2+x+1, x2+1) and (0, x2+1, x2+1)
over R[x]/〈x3 + x + 1〉. Clearly, d(C1) = 0 and d(C1) = d(C2) = 2. Hence, by
Theorem 4.3, d(C ) ≥ min{8, 4} = 4. In fact, its minimum Hamming distance is 4
actually. This example shows that sometimes Theorem 4.3 can give a sharp bound
on minimum Hamming distance of QC codes. This property can also be found in
Examples of [5].
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